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Abstract

A linearized unsteady aerodynamic analysis is pre-
sented for unsteady, subsonic vortical flows around lifting
airfoils. The analysis fully accounts for the distortion ef-
fects of the nonuniform mean flow on the imposed vortical
disturbances. A frequency domain numerical scheme which
implements this linearized approach is described, and nu-
merical results are presented for a large variety of flow con-
figurations. The results demonstrate the effects of airfoil
thickness, angle of attack, camber, and Mach number on
the unsteady lift and moment of airfoils subjected to peri-
odic vortical gusts. The results show that mean flow dis-
tortion can have a very strong effect on the airfoil unsteady
response, and that the effect depends strongly upon the
reduced frequency, Mach number, and gust wave numbers.

I. Introduction

Aerodynamicists have been concerned with the analy-
sis of unsteady flows since the early days of powered flight.
Vibration problems and flutter were the main concerns of
early researchers. Because of the complexity of unsteady
flows, and due to the lack of computational capabilities,
the classical work in unsteady aerodynamics relied heavily
upon mathematical analysis and engineering approxima-
tions. The first treatments which analyzed the unsteady
flow around an oscillating airfoil assumed the blade to be a
simple flat plate airfoil in incompressible flow. By assum-
ing the airfoil to be a flat plate at zero mean incidence,
the early researchers were able to linearize the governing
equations about a uniform mean flow and to uncouple the
unsteady part of the flow from the uniform steady state.

Later work in unsteady aerodynamics was concerned
with predicting unsteady gust loading on airfoils due to
the occurrence of upstream vortical disturbances and flow
nonuniformities. The main engineering problems which mo-
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tivated this concern were the effects of atmospheric turbu-
lence on aircraft wings and the effects of upstream flow
nonuniformities on rotating propeller blades. By using the
thin airfoil approximation and decomposing the unsteady
velocity into solenoidal and irrotational (potential) compo-
nents, the early researchers were able to reduce the mathe-
matical formulation of the gust response problem to essen-
tially that of the oscillating airfoil problem. Sears ! was
the first to derive an analytical solution for the unsteady
lift on a rigid flat plate airfoil moving through a sinusoidal
gust pattern in an incompressible flow.

In the 1960’s and 70’s, researchers began tackling the
more general problem of unsteady flows around lifting air-
foils. The theoretical analysis of the unsteady flow in this
case is much more difficult than for the case of thin, un-
loaded airfoils. For the lifting airfoil problem the mean
flow is no longer uniform and the unsteady flow cannot be
uncoupled from the steady mean flow.

Goldstein and Atassi ? were the first to present a the-
oretical treatment of unsteady vortical flow around lifting
airfoils that fully accounts for the coupling between the
steady mean flow and the unsteady perturbation velocity
field. Their second-order analysis of two-dimensional, in-
compressible, periodic vortical flows around thin airfoils
with small camber and angle of attack showed that the
convected vortical gusts are nonlinearly distorted by the
spatially varying mean flow.

The problem was re-examined by Atassi ?, who showed
that in spite of the nonlinear character of the interactive
gust problem, the unsteady lift formula can be written as
the sum of the Sears function and three other functions
accounting separately for the effects of mean flow incidence,
airfoil camber, and airfoil thickness. The explicit formulas
for the unsteady lift derived in [2] and [3] showed that for a
transverse and longitudinal gust, the mean flow distortion
has a very strong effect on the magnitude and phase of the
gust response.

For most flows encountered in applications, one deals
with heavily loaded airfoils at high Mach number and with
three-dimensional upstream gusts. The formulation for the
unsteady gust problem in this case leads to the linearized
Euler equations. Goldstein 4 presented an approach for
this general problem in which he split the unsteady veloc-
ity field into vortical and potential parts. The vortical part



is determined from the gust upstream conditions and the
Lagrangian coordinates of the mean flow, and the poten-
tial part is governed by a non-constant coefficient, inho-
mogeneous convective wave equation. Thus in Goldstein’s
formulation, the mathematical problem is reduced to solv-
ing a single equation. Goldstein’s work thus brought about
a significant simplification in the formulation of unsteady
vortical flows.

For the important special case of flows past a body
with a stagnation point, however, Goldstein’s vortical ve-
locity becomes singular along the body surface and in the
wake. Due to this singularity in the vortical velocity, the
unknown potential must satisfy singular boundary condi-
tions along these surfaces. These features make it difficult
to use Goldstein’s approach directly for numerical compu-
tations of unsteady vortical flows past a body with a stag-
nation point.

Atassi and Grzedzinski ® have shown that it is possi-
ble to modify Goldstein’s splitting of the unsteady velocity
in such a way as to remove the singularity in the vortical
velocity along the body surface and in the wake. Their reg-
ularization of Goldstein’s approach leads to a formulation
for the unsteady problem which is well-suited to numerical
solution techniques.

Up until recently, most numerical work in unsteady
aerodynamics concentrated on potential methods. The
early work dealt with solving the unsteady small distur-
bance potential equation as a way of obtaining the un-
steady flow around oscillating airfoils or cascades. Later
work was directed toward solving the linearized unsteady
potential equation and the unsteady full potential equa-
tion. More recently researchers have worked to develop the
so-called primitive variable methods, wherein the full un-
steady Euler or Navier-Stokes equations are solved using
a time-marching approach. Whereas the earlier potential
methods were directed primarily at solving unsteady flows
around oscillating airfoils and cascades, the primitive vari-
able approach can be used to solve a wider range of un-
steady flows. This approach, however, has the drawback of
being prohibitively expensive for routine engineering calcu-
lations such as are encountered in design work.

In the present paper we are concerned with large scale
unsteady disturbances such as are encountered in the rotor-
stator interaction of turbomachinery and propellers. For
such flows the length scale associated with the upstream
vortical disturbances is usually of the same order of mag-
nitude as the blade chord, and the characteristic unsteady
velocity is in many applications an order of magnitude less
than the mean velocity. Thus, if we denote the length
scale by ! and the characteristic velocity by ||, the time
sca.le associated with the upstream unsteady disturbances is
]——[ The time scale associated with the underlying mean
flow is U , where c is the airfoil chord length and U, ret
is the relatwe mean velocity. Then for large scale upstream
disturbances where I’ is the same order of magnitude as
the blade chord or larger, and || is small compared to
Uco,ret, we will have

c !

ool

Uoo,rel (1 ' 1)
That is, the time scale associated with the mean flow is an
order of magnitude less than the time scale associated with
the upstream unsteady disturbances. This is essentially the
condition under which the linearized approach is valid.

For this kind of unsteady flow, the dominant effects
will be due to the high speed convection of the upstream
flow nonuniformities, and the linearized aerodynamic ap-
proach of Goldstein as modified by Atassi and Grzedzinski
represents an attractive alternative to the primitive variable
approach.

The authors have developed a finite difference, fre-
quency domain numerical scheme which implements this
linearized approach for the purpose of obtaining numerical
solutions to compressible, unsteady, periodic vortical flows
around two-dimensional lifting airfoils. The scheme that we
present fully accounts for the distortion of the imposed up-
stream vortical disturbances by the nonuniform mean flow.
Previous numerical efforts by McCroskey and Goorjian ©
and McCroskey 7 to solve this kind of unsteady vortical
flow have not accounted for the distortion of the imposed
gust by the mean flow gradients, but have invoked the lin-
ear thin airfoil approximation in which the gust propagates
without distortion. As was shown in [2] and [3], and as will
be seen later in the present paper, the mean flow distortion
has a very strong effect on the airfoil unsteady response,
and must be taken into account if accurate unsteady re-
sults are to be obtained.

From a computational standpoint, there are numerous
advantages to the numerical scheme which we have devel-
oped. Among the advantages are the fact that the require-
ments for CPU time and computer storage are much less
than for primitive variable methods. The codes that have
been developed can easily be run on a present day scien-
tific work station as opposed to requiring a large mainframe
computer. In addition, since the governing equation is lin-
ear, a variety of standard differencing schemes are available
for the numerical solution of the boundary value problem,
and the derivation of physically correct far field boundary
conditions is much simpler.

Another advantage of the present approach is that it
provides not only an accurate near field solution from which
the body dynamic response to the imposed vortical distur-
bance can be determined, but it also provides an accurate
far field solution from which the acoustic radiation can be
calculated. This will directly yield the acoustic intensity
and power radiated without the use of Lighthill's analogy
and the tedious calculation which may result from the re-
fraction and scattering of the radiated acoustic waves by
the spatially varying flow field.

Our major purpose in the present paper is to present
numerical solutions for the general problem of unsteady vor-
tical flows around lifting airfoils in compressible subsonic
flows. The results that are presented demonstrate the ef-
fects of airfoil thickness, camber, angle of attack, and Mach



number on the airfoil unsteady response (unsteady lift and
moment) to three-dimensional, periodic vortical gusts im-
posed upstream. In Section I, we present the mathematical
formulation of the general boundary value problem. In Sec-
tion III, we give a brief description of the numerical scheme
that has been developed. Readers interested in the full de-
tails of our numerical approach should consult References
8 or 9. Finally, in Section IV we present and discuss nu-
merical results for a large variety of flow configurations.

II. Linearized Unsteady Aerodynamics for
Nonuniform Potential Flow Fields

Linearized Euler Equations

Consider an inviscid, compressible flow past an airfoil
placed at nonzero incidence to a stream with uniform up-
stream velocity Uy in the z; direction. We shall assume in
the present discussion that there are no shocks in the flow.
Now if we also assume the fluid to be an ideal, non-heat
conducting gas with constant specific heats, then the gov-
erning continuity, momentum, and energy equations can be

written D
2P G = 21
o tPV U=0 (2.1)
DU -
= 2.
D Vp (2.2)
Ds
= = 2.3
o7 =0 (2.3)
where ED; is the material derivative,

In the absence of upstream flow disturbances, and as-
suming the airfoil to be rigid, there will be a steady flow
Uo(Z) about the airfoil such that Uy(F) — Ucot as z; —
—oc0, where 1 is a unit vector in the zy direction. Let us
suppose that far upstream a small amplitude, unsteady ve-
locity disturbance, which we will denote by @, is imposed
on the flow. Then since |ty is small compared to Uy,
we assume that there will be small, unsteady perturbations
in the physical properties of the otherwise steady flow. It
is therefore reasonable to linearize the governing equations
(2.1) - (2.3) about the mean flow state and to introduce
perturbation quantities as follows:

U(Z,t) = Uo(2) + a(3, 1) (2.4)
P(Z,t) = po(&) + p'(,t) (2.5)
p(f,t) =p0(f)+pl(5vt) (26)

s(Z,t) = sp + §'(7, 1) (2.7)

where 0 subscripts denote the steady mean flow quantities
which are assumed to be known, the entropy s¢ is constant,

and i, p', p’, and s’ are the unsteady perturbation velocity,
pressure, density and entropy, respectively.

Substituting relations (2.4) - (2.7) into equations (2.1)
- (2.3) and neglecting products of small quantities, one ob-
tains the following linearized continuity, momentum, and
energy equations

Dyp'

+0p'V Uy + V(o) =0 (2.8)
Dt
Doy | == R -, 5
po(—ﬁ—t—-*-U’VUo)-f-on‘VUo = —Vp (_9)
DQS’
Dt =0, (2.10)
where %} = ;3‘3‘- + (70 .V is the convective derivative associ-

ated with the mean flow.

Equations (2.8) - (2.10) are the governing partial dif-
ferential equations for the unknown perturbation quantities
@,p',p', and s' for the problem of small, unsteady distur-
bances to an otherwise steady flow. The upstream distur-
bance i, is essentially a boundary condition which is im-
posed on the unsteady velocity #@. That is, we must have
% — o as ;7 — —oo. We shall assume in the present
paper that @, is the only upstream disturbance imposed
on the mean flow, i.e., there are no imposed entropy distur-
bances or incident acoustic waves. Now from previous work
concerning small amplitude velocity disturbances imposed
on a uniform flow, it is known that the unsteady velocity
can be decomposed into the sum of a vortical component
which has zero divergence, is purely convected, and is de-
coupled from the pressure and any thermodynamic prop-
erty, and an irrotational component which is directly re-
lated to the pressure but produces no entropy fluctuations
104 Then far upstream the total velocity U must be of the
form

U = Ul + foo(F — iUot) (2.11)
where
V fle = 0. (2.12)

There is no pressure associated with the velocity field @oo.
The unsteady velocity @ must satisfy

W(F,t) = Foo(£ — 1Uot) a5 z, — —00, (2.13)
and the pressure p’ obeys
P(£,t) =0 as z; — —co. (2.14)

Goldstein’s Approach

Goldstein * proposed a general approach for the anal-
ysis of potential mean flows with imposed upstream vorti-
cal and entropic disturbances which greatly simplifies the
Under the condi-
tions assumed on the flow in the previous section, the mean
flow can be expressed as the gradient of a potential,

mathematical treatments of such flows.

Uo(Z) = V. (2.15)
In the present work we consider two-dimensional mean flow,
so that Up(F) = (%‘}f, ‘Z—E .

The simplest case of potential mean flow with imposed
upstream disturbances is the thin airfoil problem where the
potential flow is simply a uniform parallel flow. In this

case it is advantageous to split the unsteady velocity into



a vortical component which is solenoidal, and an irrota-
tional component which is expressed as the gradient of an
unsteady potential. For the general problem of nonuni-
form flows around real airfoils, however, the splitting into
solenoidal and irrotational components does not lead to any
simplification of the mathematical formulation (See Refer-
ence 11 for details).

Goldstein proposed a new approach wherein the un-
steady velocity is decomposed into the sum of a known
vortical component #Y) and an unknown potential compo-
nent 6’¢ so that

@(z,t) = oD 4+ V¢ (2.16)
The vortical component @7 is essentially a function of the
upstream disturbance @, and the mean flow Lagrangian
coordinates and their spatial gradients. The unsteady po-
tential satisfies a nonconstant-coefficient, inhomogeneous,
convective wave equation

Do, 1 Dop. 1= = 1=

20 L G (pVe) = —V - (D), (2.17

Dt(Co2 Dt ) P (P(] ¢) o (pou )’ ( )

where %} is the convective derivative associated with the

mean flow, and ¢y and pp are, respectively, the mean flow

speed of sound and density. ¢ is related to the pressure by

Dog

! = — —. 2.1

P p(@) 5, (2.18)

The vortical component @0} is in general not sole-

noidal, but it does become solenoidal far upstream where

the mean flow is uniform. For flows with no upstream en-
tropy disturbances, #{!) is given by

uilD = @ (X — TUwt) - %. (2.19)
The components of (X — iUst), where

X = (X1,X2,X3), are essentially Lagrangian coordinates
of the mean flow fluid particles. X; = X3(z;,z2,73)
and X3 = X;(z;,22,z3) are functionally independent in-
tegrals of the equations

dz; dz, dz

hatak ik A fini A 2.20
U, U, Us (2:202)
such that
Xy —z; and X3 > z3 as 1, — —o0. (2.20b)
For two-dimensional mean flow, we may take
g
X; = 2.21
: PoolUoo ( )
and
X3 = T3, (222)

where ¥q is the stream function of the mean flow and z;
is the spatial coordinate in the spanwise direction. The
component X is defined by

X1 =UsA, (2.23)

where A is the Lighthill “Drift” function !2, which can be
expressed in terms of &, and ¥y as

it / % 1

+ —5 — ——=)d¥y,
Uso _w(Uo'-’ Uof) ¢
where the integration is carried out on ¥, = constant. The

difference in A between two points on a streamline is the
time it takes a mean flow fluid particle to traverse the dis-

A =

(2.24)

tance between those two points.

To complete the formulation of the problem, it is nec-
essary to specify boundary conditions for the unsteady po-
tential ¢. At the surface of the airfoil, the normal velocity
component must vanish, so that ¢ must satisfy

(@D +V¢) =0 (2.25)
or
% - a5, (2.26)

=
where 7 1s the unit normal at the surface of the airfoil. In
the wake, the pressure is continous so that ¢ must obey

D ag)=0, (227)

where A¢ is the jump in ¢ across the vortex sheet behind
the airfoil. Far upstream, ¢ must satisfy

¢—0 as T3 — —00. (2.28)

Atassi and Grzedzinski’s Decomposition
of the Unsteady Velocity

For most flows of practical aerodynamic interest, there
will be a stagnation point near the leading edge of the air-
foil where the mean velocity U, vanishes. At this point the
Drift function A has a logarithmic singularity, and the right
hand side of (2.19) then has a nonintegrable reciprocal sin-
gularity. Since A is additive, the right hand side of (2.19)
will remain undefined along the surface of the airfoil and
in its wake. Equation (2.26) then shows that the boundary
condition for ¢ is singular along the airfoil surface. Because
of these difficulties we conclude that it is not possible to use
Goldstein’s approach directly for numerical computations
of unsteady vortical flows around aerodynamic bodies with
a stagnation point.

Atassi and Grzedzinski ° have shown that it is possi-
ble to modify Goldstein’s splitting of the unsteady velocity
field in such a way as to remove the singular and indetermi-
nate character of the resulting boundary condition for the
unsteady potential at the airfoil surface. In their decom-
position of the unsteady velocity, @ is split into the sum
of a known vortical component #®), which has zero nor-
mal and streamwise velocity components on the airfoil and
in the wake, and an unkown potential component ¢* that
satisfies equation (2.17) with a modified source term, so
that



@(Z,t) = 7B + Vg* (2.29)

where ¢* satisfies

D, = =, 1l s —(R)
Dt(c02 Dt ) 29 (PaV ") 0 (Po*™) ( )

The vortical component @'® is given by

@ =g 4 94, (2.31)
where ¢ is a function that satisfies
Do$
=0. 2.32
o =0 (2:32)

As is shown in [5], there is no pressure associated with the
velocity ¥V, so that the vortical velocity #(®) produces no
pressure fluctuations. The pressure is determined entirely
by ¢* and is given by

~Dog”
! -_—

(2.33)

In order to choose a particular function ¢ that cancels
the singular behavior of @!/) along the surface of the airfoil
and in its wake, the boundary condition

(@ 4+9¢)-7A=0 (2.34)
is imposed at the airfoil surface and in the wake. Condi-
tion (2.34) should be understood as the limit as we move
close to the airfoil and the wake. Details concerning the
construction of the function ¢ can be found in [5]. For the
important special case of incident harmonic velocity distur-
bances, specific formulas for ¢ are presented in (5], and will
be discussed shortly in the present paper.

The function @™ has zero normal and streamwise ve-
locity components at the airfoil surface and in the wake, so
that @(F) satisfies

a® .=, (2.35)

and
@R . 7=, (2.36)

where 7 and 7 are the unit normal and tangent vectors.
The airfoil boundary condition for ¢* is then

(@R 4+ V%) i =0 (2.37)
which reduces to simply
Vé* i =0. (2.38)

In addition to satisfying the governing equation (2.30)
and the airfoil boundary condition (2.38), the unsteady po-
tential ¢* must also satisfy appropriate boundary condi-
tions in the far field, in the wake, and at the airfoil trailing
edge.

In the far fleld, equations (2.29) and (2.31) together
with condition (2.13) imply that ¢* must satisfy

Vé* — —-Vé as z; — —00. (2.39)
In the wake of the airfoil, ¢* is not continuous but must
satisfy a jump condition determined by the continuity of
the unsteady pressure. Applying (2.33) on each side of the
vortex sheet behind the airfoil leads to the condition

wake (2.40)

DO ®)
E(Ad’ )=0

Finally, at the trailing edge point ¢* must be continu-
ous in the streamwise direction to ensure satisfaction of the
Kutta condition.

Upstream Disturbances

In a previous paper !? the authors have shown that the
most general upstream vortical disturbances can be repre-
sented as the sum of three-dimensional, harmonic vorticity
waves in the airfoil frame of reference. Because the govern-
ing equation (2.30) is linear, we can without loss of gen-
erality consider a single Fourier component of the incident
disturbance, and obtain the solution to more general dis-
turbances by superposition. We therefore consider incident
velocity disturbances of the form

Too = Ge'F(F-iUsat) (2.41)
where 3] € U, E is the wave number vector which spec-
ifies the direction of propagation of the gust, and @ and k
must satisfy

-

k=0 (2.42)

in order to ensure that @ is solenoidal (satisfies the con-
tinuity equation).

Now condition (2.13) shows that the unsteady velocity
(£, t) must satisfy

— K(F~1Uoot)

u(Z,t) — ae as T} — —0o.

(2.43)

S?nce ).{2 = t"ﬁ: and ¥, is the stream function of a two-
dimensional mean flow,

In(z1? + z2%) + constant as z; — —oo,

(2.44)
so that we do not have X; — z; at upstream infinity, as
required by condition (2.20b). Equations (2.29), (2.31), and
(2.39) together with (2.19) then show that

X2z +

r
27U o

‘E(f t) - &-cii(z,—Uu,t,z;+F{};ln(z;2+z;2)+constant,:3)
1

as z; — —o00, (2.45)
so that (2.43) is not satisfied.

However, as discussed by Atassi 3, for a real airfoil
of finite span, X; — z, + constant. The two-dimensional
approximation is only valid then for distances that are small
compared to the airfoil span, but large compared to the
chord. Thus, (2.44) should be considered in this limit.



In order to avoid difficulties with upstream conditions,
the imposed upstream disturbances should then take the
general form

Foo = (-l-eu?-()?—rum t)
where X is defined by (2.21) - (2.23). Then with this defini-
tion of @, equations (2.19) and (2.45) show that condition

(2.13) will be satisfied.

(2.46)

The Boundary Value Problem

We now summarize the boundary value problem that
has been developed. For convenience, we drop the » nota-
tion which was used to distinguish between the formulation
of Atassi and Grzedzinski and the formulation of Goldstein.

We consider a potential mean flow about a two-
dimensional airfoil of infinite span with three-dimensional,
rotational velocity disturbances of the form

T = aeiF~()?—7Umt)
o =

(2.47)

imposed upstream (See Figure 1). The amplitude @ satisfies
1@ € U, and X is defined by equations (2.21) through
(2.23).

FIGURE 1. - AIRFOIL [N A THREE-DIMENSTONAL GUST.

The unsteady potential obeys the convective wave
equation

1 Dyé

Dg 1 = - 1 -
i et 54 N v IR I VAR 7 R) 9
i )~ 57 (V9) = V- (oo ®), (248)

where the unsteady velocity is given by

A& =aP® + Vg (2.49)
and the unsteady pressure is determined from
~Dod
=~ —_. 2.
P'=—pl@)p; (2:50)

In addition, ¢ must satisfy the boundary conditions

Vé-i=0 airfoil surface (2.51)

D, :

o = " 9 52

Dt(AqS) 0 wake (2.52a)

AlV$ -] =0 wake (2.52b)
Vé— —Vé as z; — —oo0, (2.53)

and be continuous in the streamwise direction at the air-
foil trailing edge. Note that for completeness we have also
included boundary condition (2.52b), which imposes conti-
nuity of the normal velocity across the wake. For nonlift-
ing airfoils this condition is automatically satisfied, since
in that case ¢ is an odd function with respect to X,. For
lifting airfoils, however, ¢ is no longer an odd function and
condition (2.52b) must be imposed.

To complete the mathematical formulation of the
boundary value problem, the explicit expression of the func-
tion ¢ must be given. For a complete discussion of the
derivation of ¢ for the general problem of arbitrary up-
stream disturbances, the reader should consult Reference
5. For the problem of periodic disturbances of the form
(2.47) imposed upstream of a single obstacle which is two-
dimensional (such as an isolated airfoil), it is shown in 3]
that ¢ is given by

T 'l azkl _ alkZ 1- e—ik,,\’z .,'E,('\?_l’uwt)
¢ = kl(al + T+ iaaU ks " Je ,
(2.54)
where
-1
a= (alya2)a3) and ag = —(%[_jr.lg.)s (2.55)

and n denotes the direction of the outward unit normal, S
denotes the stagnation point near the airfoil leading edge,
and Up = [U.BI is the magnitude of the mean velocity.

With this definition of ¢, and with the upstream veloc-
ity disturbances given by (2.47), the vortical velocity may
then be written

B = [V(3- X)) (X-TU=b | Gg. (2.36)

This completes the linearized mathematical formula-
tion of the general boundary value problem for the case of
unsteady vortical flow past a lifting airfoil.

II1. Basic Numerical Approach

Reformulation and Nondimensionalization
of the Boundary Value Problem

For numerical purposes it is necessary to reformulate
the boundary value problem presented in the previous scc-
tion into a form more suitable for numerical computations.
Of particular concern is condition (2.53). In order to facili-
tate the implementation of the far field boundary condition,
it is convenient to replace ¢ by a function whose gradient
vanishes as r — oo, where r is the distance from the airfoil
center.

To this end, we introduce the potential functions ¢,
and ¢,, where



$=¢1-¢2 (3.1)

and ¢ is a known function which is constructed such that

[¢2—d| » 0 as r—oo. (3.2)
Equation (3.1) together with conditions (2.53) and (3.2)
then show that the new potential function ¢; will satisfy

Vg — Vg~V —0 as 1 — 0o. (3.3)
The problem may then be reformulated in terms of the
unknown potential ¢,.

In the present paper we will not concern ourselves with
the explicit expression of the potential function ¢2. The
reader may consult (8] or [9] for details.

Before presenting the reformulated boundary value
problem in terms of the potential ¢,, we present the nondi-
mensionalization of the problem. We normalize as follows:

T1,72,73, X1, X2, X3 by 3

o by U
2 by %PmUco
Us, co by Uw

Po by  peo

4 by  poolUcoldl]
t,A by o

w by =
kl,_k21 k3 by %

¢7 ¢a ¢1 3 ¢2 by %l&“

a by |a]

The normalized wave number k; = ﬁf:, where w and
U are the dimensional angular frequency and free stream
velocity, respectively, is called the reduced frequency.

We will assume throughout the remainder of the
present section that all quantities are nondimensional.

The governing equation for ¢, is then

Dy, 1 Dy¢y

4
Dt(co2 Dt (3.4)

)= —'V (P06¢1) =

Dy, 1 Do¢o
Dt co ? Dt

1 1 = -
—V - (po®) + ) = =V (poVé2)
Po Po

and the boundary conditions are

Véy - i=Ve¢y-11 airfoil surface (3.3)
Do =0 k 3.6
E[ (¢1 ~ ¢2)] = wake (3.6a)
A[V(¢y — ¢2) -] =0 wake (3.6b)

Véy =0 as z; — —o0. (3.7)

Finally, the nondimensional expressions for the poten-
tial function ¢, for the unsteady velocity, the vortical ve-
locity, and for the upstream velocity disturbances are

-~ 1 agky —arky 1 — e %0 - p g ik

- e 3.8

¢ k; (a1 + 1+ a0k, ks ) (3.8)
where

X1 = A, Xg = \I’o, X3 =1I3 (39)

#(z,t) = @ + V(¢, - ¢2) (3.10)
where

B = (V(@- X))eF Xkt 4 G5 (3.11)

T = GetF- X-ikut (3.12)

Determination of Mean Potential Flow

In order to obtain numerical solutions to equation (3.4)
and its associated boundary conditions, one must first ob-
tain the steady potential flow about the airfoil for the given
flow conditions. This will in general require the use of a
standard potential flow solver such as FL(036.!*

However, an examination of equations (3.8) through
(3.12) indicate that the most natural choice of independent
variables in which to solve equation (3.4) are ®; and ¥, the
mean flow potential and stream functions. Since standard
potential flow codes solve the steady problem in terms of
the spatial coordinates z; and z,, there is some difficulty in
obtaining the steady solution as a function of &, and ¥,.

Another difficulty arises due to the fact that the grids
used by steady flow solvers are not suitable for the unsteady
calculation. As reported in References 13 and 15, accurate
solution of equation (3.4) over a large range of flow condi-
tions requires using grids which are determined as a func-
tion of both the reduced frequency k; and the free stream
Mach number M,
necessary to interpolate the solution from the steady grid

. This means that in general it will be

onto the appropriate unsteady grid.

Because of the loss of accuracy that can result from
such an interpolation process, and also because of the need
to know the mean flow as a function of ®; and ¥g, an an-
alytical scheme that can obtain the compressible, subsonic
flow about isolated airfoils was developed. The scheme is
based on the idea that, except for a small inner region sur-
rounding the airfoil, the flow gradients are not too large.
Thus in the large outer region extending to infinity, the
mean flow is essentially governed by a set of linear equa-
tions. As a result, one can use Gothert’s Rule, whereby
the compressible flow about a given airfoil can be obtained
from the incompressible flow about a similar airfoil.

The only limitation in obtaining the mean potential
flow by this particular approach is that the method will not
give a good approximation in the inner region and particu-
larly near the stagnation point. However, extensive testing
of this approach and comparing with the steady potential



flow solver FLO36 has shown that the region of inaccuracy
is very small. Results that are presented in [8], but which
are not reproduced here due to a lack of space, show that
the agreement overall is quite good, with the exception of
grid points on the airfoil surface that are near the stagna-
tion point. Because of this inaccuracy, we use FLO36 to
calculate the mean flow quantities along the airfoil surface
itself, and use the approximate analytical scheme off the
airfoil except in a small region just upstream of the stag-
nation point. In this region, for airfoils that have steady
loading, the velocities are calculated using a Taylor series
expansion. For airfoils without steady loading, the veloci-
ties are calculated from a local analytical solution which is
patched to the outer solution.

For complete details concerning this method of de-
terming the mean flow, the reader should consult (8].

Frequency Domain Formulation

An inspection of equations (3.8), (3.11), and (3.12) in-
dicates that the time dependence of the present bound-
ary value problem comes entirely through the harmonic
term e~ !, It is therefore possible to make a transfor-
mation from the time domain into the frequency domain
by a simple change of dependent variable. By transform-
ing the problem into the frequency domain, time is com-
pletely eliminated from the problem and it is possible to
significantly simplify the mathematical formulation of the
boundary value problem.

For the case of two-dimensional mean flow, we trans-

form into the frequency domain by making the following
change of dependent variable:

$1 = pe~tittikszs (3.13)

By including the ik3z3 term in the transformation, the har-
monic dependence on the spanwise component z; is also
eliminated, since all of the e**3%s termg then factor out from
each side of the equation. This is of course possible in view
of (3.9) and (3.12).

In addition to the frequency domain transformation
(3.13), we also introduce the following change of both de-
pendent and independent variables:

ik ky M2
o =pe Ko®  ywhere Ky = 163:0 (3.14)
and
$ = @o (3153.)
U = BT (3.15b)
where B, = V1 — My*, and M, is the free stream Mach
number.

By making this coordinate transformation, equation
(3.4) will reduce to a Helmholtz equation in the far field.
This is particularly advantageous for the implementation of
the far field boundary condition.

The frequency domain governing equation then takes
the following form:

T AT TR

1ig oy % %

+A1¢+A2(9?+A38_W+A4W+A53—W?

= eHo¥(S 4+ 5+ 5 - 5) (3.16)

where the coefficients A;...As are known functions which
depend on the mean flow, and S...5, are given by

emihittikazs g Voo (V@ X))eF Xkt 4 G§)
Po (3.17a)

e~thittikazs o . {{6(5. j(')]eu?-x-im + 543}

(3.17b)
. Dy, 1 Do¢
tkit+ikgza — _2 ____._0_2. 7
¢ %= 5 co? Dt ) (3.17¢)
emikittibens 5 = LG, 54, (3.17d)
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In the far field both the coefficients A4,...45 and the source
term S} + S; + S3 — J4 tend to zero.

Our basic numerical approach to solving equation
(3.16) is to use the method of finite difference approxima-
tions. By discretizing the flow field and employing finite
differences at each grid point, a large linear system of equa-
tions is obtained which can be solved using a matrix solver.

Previous experience in solving equation (3.16) for the
case of flat plate and symmetric airfoils has shown that
the independent variables (@, ¥) are not suitable compu-
tational coordinates for the gust response problem 1313,
There are difficulties in obtaining consistently accurate re-
sults over a large range of Mach numbers and reduced fre-
quencies, and also problems with the implementation of far
field boundary conditions. A transformation of the inde-
pendent variables is needed which not only provides an ad-
equate distribution of grid points around the airfoil in the
near fleld, but also provides a distribution of grid points
in the far field which is suitable for acoustic wave propa-
gation and the implementation of far field, radiation type
boundary conditions.

In order to satisfy these requirements, we make a trans-
formation into the elliptic coordinates (1, £) with the trans-
formation

® = a* cos(nn)cosh(n§)

¥ = a*sin(7n)sinh(#¢)

(3.182)
(3.18b)
where a* is an arbitrary constant (See (8] for the definition

of a*). Note that in the far field the elliptic coordinates
reduce essentially to cylindrical coordinates, and that the



® — ¥ plane is mapped into a semi-infinite strip in the n—¢
plane.

With this change of variables, the governing equation
takes the form

8* o2 ]5:2M2 k2
- Bl + G + IO (= — 55)4]
o oy
+ 4 J(ﬂ,f)¢+T1§E+T2%
8%y 9y %y
+T33£2+T4 +T563§
= eiK°¢(51 + 57 + 53 — S4) I (0, €), (3.19)

where J(,£) is the Jacobian of the transformation (3.18),
and 7}...Ty are known functions of (5, £) which depend upon
the mean flow.

The frequency domain boundary value problem then
consists of the governing equation (3.19) and boundary con-
ditions (3.5) - (8.7), together with the requirement that the
velocity is finite at the trailing edge.

However, we point out that condition (3.7), which re-
quires that V¢; — 0 at upstream infinity, cannot be im-
posed throughout the far field on a boundary at a finite
distance from the airfoil. To implement such a condition
would impose a reflecting boundary condition which can
lead to large errors in the solution.

To correctly model the physics of the present unsteady
boundary value problem requires that the far field bound-
ary condition be such that it allows outgoing acoustic waves
to leave the solution domain without being reflected back
into the computational grid. While this can be done in
more than one way, the authors have found that the best
approach is to use a Sommerfield radiation condition on the
unsteady pressure. This approach is easy to implement and
has the advantage of giving an accurate far field solution
from which the acoustic radiation can be calculated.

Our far field boundary condition is then given by

\/< P (G2 (5~ iam) ¥ =0 (320

where
$ =Rcos© (3.21a)
¥ = Rsin Q. (3.21b)

This condition is applied for all grid points on the far field
boundary.

Numerical Solution Procedure

The problem to be solved numerically consists of the
governing equation (3.19) and the boundary conditions

(3.5), (3.6a), (3.6b), and (3.20). As our major purpose
in the present paper is to present the formulation of the
boundary value problem and to discuss numerical results,
we will not discuss the remaining details of our numerical
approach. The interested reader should consult {8] or [9].
We do, however, present the following general information
about our numerical solution procedure.

First, our basic numerical approach is to use the
method of finite difference approximations and to solve
the resulting matrix equation using a direct, sparse matrix
solver. The governing equation is modelled using nine-point
central differencing, and the airfoil and far field boundary
conditions are satisfied using four-point, one-sided differ-
encing. The wake boundary condition (3.6b) is satisfied
using three-point, one-sided differencing both above and
below the wake.

Second, we point out that it is essential that the source
term be evaluated accurately in order to obtain accurate
solutions to the problem. This depends largely upon an
accurate evluation of the Drift function defined by equation
(2.24), and upon an accurate evaluation of the potential
functions #5 and ¢ so that condition (3.2) is satisfied in the
numerical implementation.

Finally, we mention that obtaining accurate solutions
to the present wave propagation problem requires using
grids which are determined as a function of both the Mach
number and reduced frequency !*1°, See [8] or [9] for de-
tails on how this is done for the lifting airfoil problem.

IV. Discussion of Numerical Results

Our major purpose in the presentation and discussion
of numerical results is to demonstrate the effects of airfoil
thickness, angle of attack, camber, and Mach number on the
airfoil unsteady response to imposed upstream rotational
velocity disturbances (gusts). We will examine in detail
the effects of each of these parameters on the unsteady lift
and moment of airfoils subjected to one-, two-, and three-
dimensional gusts.

The authors would like to emphasize that great care
was taken to validate the codes that were used to obtain the
numerical results presented in this section. Due to a lack of
space, however, we will not concern ourselves with the vali-
dation process in the present work. Information concerning
the steps that were taken to validate our numerical scheme
can be found in References 8, 9, and 15.

Before discussing the unsteady results, we show plots
of the mean flow Mach number at the airfoil surface for
the various flow configurations that were considered in the
present work. These plots are shown in Figures 2 through 9.
All of the airfoils used for these calculations were Joukowski
The Mach number results
shown in these figures, with the exception of the incom-

airfoils of various geometries.

pressible results in Figure 8, were obtained from the steady
potential flow solver FL036.1* The incompressible results
were obtained from the known analytical solution for the
ideal flow around a Joukowski airfoil.



Figures 2 and 3 present results for a 12% thick sym-
metric airfoil at zero degrees incidence for Mach numbers
of .5 and .7, respectively. Even though these airfoils are
unloaded, their thickness alters the mean flow consider-
ably from the linear thin airfoil case where the Mach num-
ber is constant throughout the flow. Note that for the
higher Mach number case the mean flow variation is much
stronger. It will be seen shortly that even this amount of
mean flow variation can have a significant effect on the un-
steady flow due to the distortion of the vortical structure
of the upstream disturbances.

Figures 4 - 9 present results for airfoils with steady
loading. The results in Figure 4 are for a 12% thick sym-
metric airfoil at an angle of attack of 5°, and the results
in Figure 5 are for a 12% thick airfoil with 5% camber but
0° angle of attack. The free strearn Mach number for both
of these plots is .5. Note that for the uncambered airfoil
with 5° angle of attack, the loading is concentrated near the
leading edge, whereas for the cambered airfoil with zero in-
cidence angle the loading is distributed more evenly over
the entire airfoil. Note also that even though the gradients
in the flow for Figure 4 are much stronger than for the re-
sults in Figure 5, the airfoil in Figure 5 has the larger steady
lift coefficient. As will be seen later, the magnitude of the
steady lift coefficient is in some sense a good measure of
the amount of mean flow distortion for lifting airfoils over
nonlifting airfoils.

In Figures 6 and 7, we present results for airfoils with
2° angle of attack, 5% camber, and a free stream Mach
number of .5. The thickness ratios are .06 and .12, respec-
tively. Because of the larger thickness ratio, the airfoil in
Figure 7 has a much smoother Mach number profile near
the leading edge, and also a slightly larger steady lift coef-
ficient. Due to its heavier loading, the airfoil in Figure 7
will have a stronger distortion effect on the incident vortical
disturbances than will the airfoil in Figure 6, even though
their angle of attack and camber ratios are the same.

Finally, in Figures 8 and 9, results are presented for
12% thick symmetric airfoils at 3° angle of attack with
free stream Mach numbers of .1 and .6, respectively. Note
that, due to compressibility eflects, the increase in the Mach
number leads to much stronger gradients in the mean flow.
Again we would expect the stronger mean flow variation to
in turn lead to a stronger distortion of the impinging gusts.

We now turn our attention to the unsteady results pre-
sented in Figures 10 through 39. The results that are shown
are presented in sets of six plots. In each set, the first three
plots present results for the normalized unsteady lift, and
the next three plots present results for the normalized un-
steady moment. The normalized unsteady lift and moment
are usually referred to as the response functions and are
defined by L

_— 4.1
T Poo U oo | a}e’ (1)

RL(kl) k31 MOO) =

and

M
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where L' is the unsteady lift and M’ is the unsteady mo-
ment about the airfoil center.

In Figures 10 through 21 we present results that
demonstrate the effects of airfoil thickness on the unsteady
response functions. Figures 10 through 15 are for sym-
metric unloaded airfoils, and Figures 16 through 21 are for
loaded airfoils. Figures 22 through 33 present results that
demonstrate the effects of mean airfoil loading on the un-
steady response functions. In Figures 22 through 27, the
induced loading is due to angle of attack, and in Figures 28
through 33 it is due to airfoil camber. Finally, Figures 34
through 39 present results that demonstrate the effects of
Mach number on the unsteady response functions.

In each set of six plots, we present results for one-,
two-, and three-dimensional gusts — first for the unsteady
lift and then for the unsteady moment. The reduced fre-
quency values used in the calculations were the same for all
the figures, and were as follows: &; = 0, 0.01, 0.03, 0.06,
0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.3,
and 4.0. For each response function shown, the point on the
real axis and furthest to the right corresponds to the quasi-
steady case in which k; = 0. The other points along the
response function curve correspond in order to the reduced
frequency values given above.

The conditions on the gust wave number parameters
for the plots shown are as follows: for the one-dimensional
case, i.e., a transverse gust, k; = 0, k3 = 0, a; = 0,

az = 1, a3 = 0; for the two-dimensional gust, ie., a
transverse and longitudinal gust, k; = ki, k3 = 0,
a) = —ay, |@ =1, a; > 0; and for the three-dimensional
case ko = ki, ky = 4, @-F =0, |[@ =1, aa > 0,
and %f = —% .

Effects of Airfoil Thickness on the
Unsteady Response Functions

In Figures 10 through 15 we compare unsteady results
for a zero thickness airfoil versus those for a 12% thick sym-
metric Joukowski airfoil (See Figure 3). The free stream
Mach number is .7, and both airfoils have zero mean load-
ing. It is clear from the results shown in these figures that
airfoil thickness can have a strong effect on the unsteady
lift and moment, and that the effect depends on both the
reduced frequency and the gust wave number conditions.

For the case of the transverse gust, there is a strong
effect on both the unsteady lift and moment for both the
low and high reduced frequencies. Figure 10 shows that
the unsteady lift for the quasi-steady case ( k; — 0 ) is in-
creased by about 16% for the thick airfoil over the flat plate
airfoil, and that the magnitude of the unsteady lift is sub-
stantially increased for the low reduced frequencies ranging
roughly from 0 up to about .1. For the higher frequencies
there is a reduction in the unsteady lift and also a change
in the phase, whereas in the mid-frequency range of about
.2 up to 2, the effect is mainly a change in the phase. The
effects of thickness on the unsteady moment are similar to
its effect on the unsteady lift, with the exception that the



effect at the higher frequencies is somewhat stronger. For
both the unsteady moment and the unsteady lift, the effect
of airfoil thickness in the transverse gust case is in general
to significantly increase the magnitude of the response for
the low reduced frequencies and decrease it for the high
reduced frequencies.

In the case of the transverse and longitudinal gust,
the effects of airfoil thickness are somewhat different from
the transverse gust case, in that there is little effect on
the unsteady lift and moment at the lower frequencies. At
the higher frequencies, the effect is mainly a reduction in
magnitude and a change in phase, analagous to the results
for the transverse gust.

The three-dimensional gust results shown in Figures 12
and 15 indicate that the strongest effect of the airfoil thick-
ness occurs for reduced frequencies in the mid-frequency
range, rather than for the low or high frequencies as was
the case with the 1-D and 2-D gust results. Note that the
quasi-steady moment for this case decreases for the thicker
airfoil, rather than increasing as in the transverse gust case
(Figure 13).

Figures 16 through 21 compare unsteady results for
a 6% thick airfoil versus a 12% thick airfoil. The angle
of attack and camber ratios of the airfoils are 2° and .05,
respectively, and the free stream Mach number is .5 (See
Figures 6 and 7). The effects of thickness on the unsteady
response functions is not as strong in these figures due to
both the lower Mach number and the fact that the com-
parison is between 6% thick and 12% thick airfoils versus
0% and 12% thick airfoils. There are, however, similari-
ties between these results and those described above. For
the transverse gust, the effects are mainly to increase the
magnitude of the response at the lower frequencies and de-
crease it at the higher frequencies. For the transverse and
longitudinal gust, there is not much effect at the low re-
duced frequencies, while at the higher frequencies there is a
reduction in magnitude analogous to that of the transverse
gust case. The three-dimensional gust results in Figures 18
and 21 show little effect due to the change in airfoil thick-
ness.

We conclude that airfoil thickness can have a large
effect on the unsteady lift and moment, and that the ef-
fect varies considerably depending on both the reduced fre-
quency and the gust wave number parameters. In addition,
the results in Figures 10 - 15 show the inability of lincar
theory to serve as an adequate approximation for flows with
mean flow variation which occurs due to airfoil thickness.

Effects of Mean Loading on the
Unsteady Response Functions

In Figures 22 - 33 we present results that demonstrate
the effects of mean airfoil loading on the unsteady response
functions. In Figures 22 - 27, the induced loading is due to
angle of attack alone, while in Figures 28 - 33 the induced
loading is due to camber alone. The free stream Mach
number is .5, the airfoil thickness ratio is .12, and the steady
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lift coefficients corresponding to the two loaded airfoils are
.72 and .82, respectively (See Figures 2, 4, and 5).

An analysis of the results indicates that there are re-
markable similarities between the results shown in Figures
22-24 and Figures 28-30 which demonstrate the effects of
mean loading on the unsteady lift.

It is seen that for the case of a transverse gust (Fig-
ures 22 and 28), there is virtually no effect on the unsteady
lift due to mean loading. This result is in agreement with
the theoretical predictions of Atassi 3 concerning the ef-
fect of mean airfoil loading on the unsteady lift of airfoils
subjected to a transverse gust in incompressible flow. It is
interesting that the theoretical result essentially holds also
for compressible flows.

Unlike the results for the simple transverse gust, the
results for the transverse and longitudinal gust (Figures 23
and 29) show a strong effect due to mean airfoil loading. In
both Figures 23 and 29, the effect at the low frequencies is
essentially to shift the curve in the direction of the negative
real axis. For the results in Figure 23, the reduction in the
quasi-steady lift (k; — 0,%, — 0) for the loaded airfoil over
the unloaded airfoil is 20%, while for the results in Figure
29, the reduction is 23%.

It is clear from the results in these figures that mean
airfoil loading leads to a significant reduction in the un-
steady lift for the low reduced frequencies of an airfoil in
a transverse and longitudinal gust. It turns out that the
amount of the reduction in the quasi-steady lift for the two-
dimensional gust case is directly proportional to the steady
lift coeficient of the loaded airfoil. That is, if we denote the
change in the quasi-steady lift from the unloaded airfoil to
the loaded airfoil by ACY, and the proportionality constant
by —K, we have approximately AC} = —K C|, where Cp,
is the steady lift coefficient of the loaded airfoil and K is a
constant. It has been determined from the results presented
in [8] that the constant K = .25. This result is in agreement
with the theoretical results of Atassi ?, from which it can be
shown that for airfoils with small angle of attack and cam-
ber in an incompressible flow, AC}, = —%ﬁ- Cp=-.23C;.
The difference in the theoretical value and the numerical
value of the proportionality constant can be accounted for
by the fact that the theoretical result does not account for
the thickness of the airfoil. It is remarkable that the value

of K = .25 holds for both lightly loaded airfoils and heavily
loaded airfoils, and is also nearly independent of the Mach
number.,

In looking at the three-dimensional gust results in Fig-
ures 24 and 30, it is clear that the mean airfoil loading has
a strong effect on the unsteady lift for the low reduced fre-
quencies. As in the case of the transverse and longitudinal
gust, the effect of the loading in the 3-D case is to signifi-
cantly reduce the magnitude of the unsteady lift. Interest-
ingly enough, the reduction in the quasi-steady lift for the
3-D case is also proportional to the steady lift coefficient
of the loaded airfoil. In this case the value of the propor-
tionality constant K is .10. The reduction in the value of



the proportionality constant for the 3-D case is probably
due to the effect of the spanwise wave number k3. At the
present time, however, it is not known to what extent the
value of K depends upon k;.

Unlike the unsteady lift, the unsteady moment re-
sponds differently to mean airfoil loading depending upon
whether the loading is induced by angle of attack or cam-
ber. The results in Figures 26-27 indicate that for the 2-D
and 3-D gust cases, the unsteady moment is sensitive to
changes in the angle of attack, particularly at the lower
frequencies. For the 2-D case, the quasi-steady moment of
the loaded airfoil has been reduced by 17% over that of
the unloaded airfoil, and for the 3-D case the reduction is
11%. An analysis of the results in Figures 32-33, however,
indicates that there is no corresponding reduction in the
quasi-steady moment when the mean loading is induced by
airfoil camber, and in fact that the camber of the airfoil has
almost no effect on the unsteady moment for any range of
reduced frequencies.

We conclude, then, that for the airfoils considered in
the present work, an increase in angle of attack of an airfoil
in a 2-D or 3-D gust leads to a significant reduction in the
unsteady moment for the low reduced frequencies, but an
increase in the airfoil camber has virtually no effect on the
unsteady moment for any range of reduced frequencies.

This is in contrast to the effects of mean loading on the
unsteady lift, where both angle of attack and camber lead
to a significant reduction in the magnitude of the unsteady
response for the low reduced frequencies of the 2-D and
3-D gust cases. Since the reduction of the quasi-steady lift
is proportional to the steady Lft coefficient and indepen-
dent of whether the loading is induced by angle of attack
or camber, the steady lift coefficient is in some sense a good
measure of the amount of mean flow distortion for lifting
airfoils over nonlifting airfoils. In addition, this points out
that the amount of error made by a numerical scheme which
does not take into account the effects of mean flow distor-
tion increases as the steady loading on the airfoil increases.

Effects of Mach Number on the
Unsteady Response Functions

We conclude our discussion of the numerical results by
looking at the effects of Mach number on the unsteady re-
sponse functions. Figures 34 through 39 show comparisons
of the unsteady response functions for a symmetric, 12%
thick airfoil with 3° angle of attack at Mach numbers of .1
and .6.

An analysis of the results would seem to indicate that
the main effect of an increase in Mach number on the un-
steady response functions is to substantially increase the
magnitude of the unsteady response for the low reduced
frequencies, decrease the magnitude at the high frequen-
cies, and alter the phase for the middle frequencies. The
increase in magnitude at the low frequencies is quite strong,
particularly for the 1-D and 2-D gust cases. For the trans-
verse gust, the quasi-steady lift for the .6 Mach number
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airfoil is 30% larger than for the .1 Mach number airfoil.
For the transverse and longitudinal gust, the increase is
21%, while for the 3-D gust the increase is only 6%. The
percent increase in the quasi-steady moments for the 1-D,
2.D, and 3-D cases are similar.

Although it is not readily apparent from the results in
Figures 34-39, another effect of an increase in airfoil Mach
number is to intensify the effect of mean flow distortion
for a given airfoil configuration. Due to an increase in the
Mach number, the mean flow gradients become stronger,
and there will be a correspondingly stronger distortion ef-
fect upon the oncoming vortical waves. The airfoil selected
for the comparison in Figures 34 - 39 is too lightly loaded
for this effect to be apparent. The reader may consult (8]
for results which demonstrate this phenomenon.

V. Conclusion

In the present paper the authors have presented a lin-
earized unsteady aerodynamic analysis for unsteady vorti-
cal flows around lifting airfoils. The first order analysis that
we have presented fully accounts for the distortion effects of
the nonuniform mean flow, and the results presented have
demonstrated that mean flow distortion can have a very
strong effect on the unsteady lift and moment.

We conclude on the basis of the numerical results pre-
sented in the previous section that our linearized unsteady
aerodynamic analysis can be used to solve a wide variety
of unsteady vortical flow problems. The results that were
pfesented demonstrated the effects of airfoil thickness, cam-
ber, angle of attack, and Mach number on the unsteady lift
and moment of Joukowski airfoils in subsonic vortical flows.
It was seen that the effects of these parameters on the un-
steady response functions varies considerably, depending on
the magnitude of the reduced frequency, the Mach number,
and the gust wave number conditions. The results pre-
sented have thus demonstrated the importance of having a
numerical scheme which can handle three-dimensional vor-
tical flows for a large range of Mach numbers and reduced
frequencies.

Finally, the authors are in the process of extending
the present linearized analysis to include transonic flows.
Details will be presented in a future paper.
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FIGURE 7. - MEAN FLOW MACH NUMBER AT THE AIRFOIL SURFACE
FOR A 12 PERCENT THICK JOUKOWSKI AIRFOIL WITH M_ = .5.
a = 20, AND CAMBER RATIO = 0.05. STEADY C =1
CALCULATION BY FLO36.
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FIGURE 6. - MEAN FLOW MACH NUMBER AT THE AIRFOIL SUR-
FACE FOR A 6 PERCENT THICK JOUKOWSK! AIRFOIL WITH
M= .5. a = 2% AND CAMBER RATIO = 0.05. STEADY
€, = 1.05. CALCULATION BY FLO36.
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FIGURE 8. - MEAN FLOW MACH NUMBER AT THE AIRFOIL SURFACE
FOR A 12 PERCENT THICK JOUKOWSKI ATRFOIL WITH M= .1,
a = 39, AND CAMBER RATIO = 0.0. STEADY ¢ =0.36.
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FIGURE 10. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF
A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST.
My =.7.a= 0°, CAMBER RATIO = 0.0.
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FIGURE 12. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF
A SYMMETRIC JOUKOWSKI AIRFOIL 1IN A THREE-DIMENSIONAL
GUST. M = .7.a= 0°. CAMBER RATIO = 0.0.
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FIGURE 11. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF
A SYMMETRIC JOUKOWSKI[ A[RFOIL IN A TRANSVERSE AND LONGI-
TUDINAL GUST. M_ = .7. a = 0%, CAMBER RATIO = 0.0.
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FIGURE 13. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT

OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST.

M, = .7. a = 0% CAMBER RATIO = 0.0.



IMAGINARY MOMCNT

IMAGINARY LIFT

IMAGINARY LIFY

[MAGINARY MOMCNT

THICKNESS

RATIO
I .12
o 0.0
s | | 1 |
‘~.5 0 .S 1.0 1.5 2.0
REAL MOMENT
FIGURE 14. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT
OF A SYMMETRIC JOUKOWSK] ATRFOIL IN A TRANSVERSE AND
LONGITUDINAL GUST. Mo =.7.a= 0%, CAMBER RATIO =
0.0,
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FIGURE 16. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF

A JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST. M = .5.
a = 20, CAMBER RATIO = 0.05.
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FIGURE 18. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF A

JOUKOWSKI AIRFOTL IN A THREE-DIMENSIONAL GUST. M = .5.
g = 29, CAMBER RATIO = 0.05.
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FIGURE 20. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT OF

A JOUKOWSKI AIRFOIL IN A TRANSVERSE AND LONGITUDINAL GUST.

M, = .5. @ = 20, CAMBER RATIO = 0.05.
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FIGURE 15. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT
OF A SYMMETRIC JOUKOWSKT AIRFOIL IN A THREE-DIMENSIONAL

GUST. My = .7. @ = 0O, CAMBER RATIO = 0.0,
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FIGURE 17. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF
A JOUKOWSKI AIRFOIL IN A TRANSVERSE AND LONGITUDINAL
GUST, M= .5.a~= 29, CAMBER RATIO = 0.0S.
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FIGURE 19. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT
OF A JOUKOWSK1 AIRFOIL IN A TRANSVERSE GUST. M_,= .5.
a = 2°, CAMBER RATIO = 0,05.
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FIGURE 21. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT
OF A JOUKOWSKI AIRFOIL IN A THREE-DIMENSIONAL GUST.
My = .S. @ = 20, CAMBER RATIO = 0.05.
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FIGURE 22. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY
LIFT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE
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FIGURE 24. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY
LIFT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-
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DIMENSIONAL GUST. M_ = .5, THICKNESS RATIO = .12,
CAMBER RATIO = 0.0,
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FIGURE 26. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY
MOMENT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANS-
VERSE AND LONGITUDINAL GUST. M_, = .5, THICKNESS
RATIO = ,12. CAMBER RATIO = 0.0.
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FIGURE 23. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY
LIFT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE
AND LONGITUDINAL GUST. M_ = .S. THICKNESS RATIO =

0

.12, CAMBER RATIO = 0.0.
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FIGURE 25. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY
MOMENT OF A SYMMETRIC JOUKOWSKI AIRFOIL [N A TRANS-

VERSE GUST. M_ = .5. THICKNESS RATIO = ,12., CAMBER
RATIO = 0.0.
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FIGURE 27. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY
MOMENT OF A SYMMETRIC JOUKOWSK! AIRFOIL IN A THREE-
DIMENSIONAL GUST. M_, = .5. THICKNESS RATIO = .12,
CAMBER RATIO = 0.0.
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FIGURE 28. - EFFECT OF CAMBER ON THE UNSTEADY LIFT OF A
JOUKOWSK1 AIRFOIL IN A TRANSVERSE GUST. M_ = .5,

a = 00, THICKNESS RATIO = .12,
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FIGURE 30. - EFFECT OF CAMBER ON THE UNSTEADY LIFT OF A
JOUKOWSK] AIRFOIL IN A THREE-DIMENSIONAL GUST. M =

) o0
.5, 0 = QY. THICKNESS RATIO = ,12.
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FIGURE 32. - EFFECT OF CAMBER ON THE UNSTEADY MOMENT OF
A JOUKOWSK! AIRFOIL IN A TRANSVERSE AND LONGITUDINAL
GUST. M, = .5. 0= 0%, THICKNESS RATIO = ,12.
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FIGURE 29. - EFFECT OF CAMBER ON THE UNSTEADY LIFT OF A
JOUKOWSKI AIRFOIL [N A TRANSVERSE AND LONGITUDINAL GUST.
Mo, = .5. 0= 09, THICKNESS RATIO = .12,
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FIGURE 31. - EFFECT OF CAMBER ON THE UNSTEADY MOMENT OF
A JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST. M = .S.
a = 0%, THICKNESS RATIO = .12.
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FIGURE 33. - EFFECT OF CAMBER ON THE UNSTEADY MOMENT OF A
JOUKOWSK! AIRFOIL IN A THREE-DIMENSIONAL GUST. = .5,
@ = 09, THICKNESS RATIO = .12.
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FIGURE 34, - EFFECT OF MACH NUMBER ON THE UNSTEADY LIFT
OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRNASVERSE GUST.
g = 30, CAMBER RATIO = 0.0. THICKNESS RATIO = .12.
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FIGURE 36. - EFFECT OF MACH NUMBER ON THE UNSTEADY LIFT
OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-DIMENS IONAL
GUST. @ = 30, CAMBER RATIO = 0.0, THICKNESS RATIO =
2.
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FIGURE 38. - EFFECT OF MACH NUMBER ON THE UNSTEADY MOMENT
OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE AND
LONGITUDINAL GUST. a = 30, CAMBER RATIO = 0.0, THICK-
NESS RATIO = .12.
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FIGURE 35, - EFFECT OF MACH NUMBER ON THE UNSTEADY LIFT
OF A SYMMETRIC JOUKOWSKI AIRFQIL IN A TRANSVERSE AND
LONGITUDINAL GUST. @ = 30, CAMBER RATIO = 0.0, THICK-

NESS RATIO = .12,
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FIGURE 37. - EFFECT OF MACH NUMBER ON THE UNSTEADY
MOMENT OF A SYMEMTRIC JOUKOWSKI AIRFOIL I[N A TRANS-
VERSE GUST. @ = 39, CAMBER RATIO = 0.0. THICKNESS
RATIO = ,12.
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FIGURE 39. - EFFECT OF MACH NUMBER ON THE UNSTEADY MO-
MENT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-
DIMENSIONAL GUST. a = 30, CAMBER RATIO = 0.0, THICK-
NESS RATIO = .12,
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